Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Study on accuracy of analysis of the radiation-induced component in the ESR spectra of teeth

Mitsuyasu, Yusuke*; Oka, Toshitaka; Takahashi, Atsushi*; Kino, Yasushi*; Okutsu, Kenichi*; Sekine, Tsutomu*; Yamashita, Takuma*; Shimizu, Yoshinaka*; Chiba, Mirei*; Suzuki, Toshihiko*; et al.

KEK Proceedings 2022-2, p.120 - 125, 2022/11

We investigate the effect of sample's anisotropy and measurement condition to obtain the higher reproducibility for the shape of the ESR spectrum and the intensity of CO$$_{2}^{-}$$ radical.

Journal Articles

Radiation exposure and oxidative stress status of wild Japanese macaques in the ex-evacuation zone of the Fukushima Daiichi Nuclear Power Plant accident

Ishikawa, Ryoya*; Suzuki, Masatoshi*; Kino, Yasushi*; Endo, Satoru*; Nakajima, Hiroo*; Oka, Toshitaka; Takahashi, Atsushi*; Shimizu, Yoshinaka*; Suzuki, Toshihiko*; Shinoda, Hisashi*; et al.

KEK Proceedings 2022-2, p.61 - 66, 2022/11

The balance between oxidative stress and antioxidant activity, which is a defense mechanism against oxidative stress, was investigated in the liver and bladder of wild Japanese macaques captured in Fukushima Prefecture. No significant induction of oxidative stress by exposure to environmental radionuclides after the Fukushima nuclear accident was observed, suggesting that the stress defense mechanism of the organism is activated in some organs.

Journal Articles

Variation of crystallinity and secondary ion quantity of uranium particles with heating temperature of Sample preparation

Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka

KEK Proceedings 2022-2, p.108 - 113, 2022/11

Automated Particle Measurement (APM) is the first measurement of environmental sample for safeguard purpose. APM tells us the number of particles in sample, their enrichment and their location. Precision and accuracy of APM is easily affected by particle condition. We have investigated how influential baking temperature in sample preparation are for uranium secondary ion quantity, uranium hydride generation and particle crystallinity. Our experimental results showed that baking temperature of 800$$^{circ}$$C reduced uranium secondary ion quantity to 33% compared with baking at 350$$^{circ}$$C. Uranium hydride generation ratio of the sample baked at 850$$^{circ}$$C was also 4 times higher than the sample baked at 350$$^{circ}$$C. Baking at 850$$^{circ}$$C raised only crystallinity of uranium particles. Baking sample at too high temperature caused less uranium secondary ion generation and much more uranium hydride generation. It made precision and accuracy of APM worse. In our experiment, baking at 350$$^{circ}$$C is suitable for uranium particles in the safeguards sample.

Journal Articles

Preparation of the particles containing isotope reference uranium for the determination of the low abundant U isotope ratios

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

KEK Proceedings 2022-2, p.154 - 158, 2022/11

Precise determination of minor U isotopes ($$^{233}$$U and $$^{236}$$U) of particles from the safeguard environmental samples is powerful method for detecting the undeclared nuclear activities. In this study, preparation method of U particle was examined to utilize for the minor U isotope determination. The porous silica particles were used as the particle matrix and lutetium was mixed to the impregnation solution as U impregnation indicator for the particle picking. The result of the Scanning Electron Microscope indicated that the contacting the solution with Si particles overnight gently could produce the impregnated particles effectively rather than the mixing them with PFA stick.

Journal Articles

Development of an analytical method for $$^{90}$$Sr with ICP-MS/MS using O$$_{2}$$ and NH$$_{3}$$ mixed gas reaction

Koarai, Kazuma; Matsueda, Makoto; Terashima, Motoki

KEK Proceedings 2022-2, p.102 - 107, 2022/11

Analytical methods with inductively coupled plasm mass spectrometry (ICP-MS) have been developed for the determination of $$^{90}$$Sr in environmental samples; however, the sensitivity of the ICP-MS methods and removal of interferences are insufficient to measure trace amount of $$^{90}$$Sr in the environmental samples. In this study, we developed an analytical method for $$^{90}$$Sr with ICP-DRC-MS/MS using oxygen and ammonia mixed gas reaction. This analytical method could be applied for measurement of $$^{90}$$Sr in reference soil.

Journal Articles

Chemical state analysis of uranium dioxide particles by micro-Raman mapping

Yomogida, Takumi; Kitatsuji, Yoshihiro; Miyamoto, Yutaka

KEK Proceedings 2022-2, p.148 - 153, 2022/11

The Research Group for Safeguards Analytical Chemistry is currently developing a method to analyze the chemical state of uranium particles in environmental samples collected at nuclear facilities using micro-Raman spectroscopy. The chemical state of uranium particles in environmental samples can be partially oxidized by long-term exposure to air. It is necessary to develop a method to analyze the chemical state of the entire particle. In this study, uranium dioxide stored under atmospheric conditions was analyzed by micro-Raman mapping. The Raman spectra showed that uranium peroxide was locally present in the UO$$_{2}$$ particle. The Raman peaks originating from the structure of UO$$_{2}$$ around 570 cm$$^{-1}$$ and 1150 cm$$^{-1}$$ could not be observed in the point analysis of the particle center. On the other hand, in mapping analysis, Raman peaks originating from the structure of UO$$_{2}$$ can be observed from the same particle, demonstrating that Raman mapping analysis is an effective method for analyzing the chemical state of the entire particle.

6 (Records 1-6 displayed on this page)
  • 1